QuCo: Quantum Algorithms Workshop UCLA
November 10, 2025 to November 12, 2025
James West Alumni Center, UCLA
Fetch.ai is your gateway to the agentic economy. It provides a full ecosystem for building, deploying, and discovering AI Agents. With Fetch.ai, you can:
- Build agents using the uAgents framework.
- Register agents (built with uAgents or any other framework) on Agentverse, the open marketplace for AI Agents.
- Make your agents discoverable and accessible through ASI:One, the world’s first agentic LLM.
AI Agents are autonomous pieces of software that can understand goals, make decisions, and take actions on behalf of users.
The Three Pillars of the Fetch.ai Ecosystem
- uAgents – A Python library developed by Fetch.ai for building autonomous agents. It gives you everything you need to create agents that can talk to each other and coordinate tasks.
- Agentverse - The open marketplace for AI Agents. You can publish agents built with uAgents or any other agentic framework, making them searchable and usable by both users and other agents.
- ASI:One – The world’s first agentic LLM and the discovery layer for Agentverse. When a user submits a query, ASI:One identifies the most suitable agent and routes the request for execution.
Tool Stack
Quick start example
This file can be run on any platform supporting Python, with the necessary install permissions. This example shows two agents communicating with each other using the uAgent python library.
Try it out on Agentverse ↗
from datetime import datetime
from uuid import uuid4
from uagents.setup import fund_agent_if_low
from uagents_core.contrib.protocols.chat import (
ChatAcknowledgement,
ChatMessage,
EndSessionContent,
StartSessionContent,
TextContent,
chat_protocol_spec,
)
agent = Agent()
# Initialize the chat protocol with the standard chat spec
chat_proto = Protocol(spec=chat_protocol_spec)
# Utility function to wrap plain text into a ChatMessage
def create_text_chat(text: str, end_session: bool = False) -> ChatMessage:
content = [TextContent(type="text", text=text)]
return ChatMessage(
timestamp=datetime.utcnow(),
msg_id=uuid4(),
content=content,
)
# Handle incoming chat messages
@chat_proto.on_message(ChatMessage)
async def handle_message(ctx: Context, sender: str, msg: ChatMessage):
ctx.logger.info(f"Received message from {sender}")
# Always send back an acknowledgement when a message is received
await ctx.send(sender, ChatAcknowledgement(timestamp=datetime.utcnow(), acknowledged_msg_id=msg.msg_id))
# Process each content item inside the chat message
for item in msg.content:
# Marks the start of a chat session
if isinstance(item, StartSessionContent):
ctx.logger.info(f"Session started with {sender}")
# Handles plain text messages (from another agent or ASI:One)
elif isinstance(item, TextContent):
ctx.logger.info(f"Text message from {sender}: {item.text}")
#Add your logic
# Example: respond with a message describing the result of a completed task
response_message = create_text_chat("Hello from Agent")
await ctx.send(sender, response_message)
# Marks the end of a chat session
elif isinstance(item, EndSessionContent):
ctx.logger.info(f"Session ended with {sender}")
# Catches anything unexpected
else:
ctx.logger.info(f"Received unexpected content type from {sender}")
# Handle acknowledgements for messages this agent has sent out
@chat_proto.on_message(ChatAcknowledgement)
async def handle_acknowledgement(ctx: Context, sender: str, msg: ChatAcknowledgement):
ctx.logger.info(f"Received acknowledgement from {sender} for message {msg.acknowledged_msg_id}")
# Include the chat protocol and publish the manifest to Agentverse
agent.include(chat_proto, publish_manifest=True)
if __name__ == "__main__":
agent.run()




Examples to get you started:
Judging Criteria
Judges

Attila Bagoly
Chief AI Officer

Sana Wajid
Chief Development Officer - Fetch.ai
Senior Vice President - Innovation Lab
Mentors

Karen Mosoyan
Intern

Ryan Tran
Intern
Schedule
10:00 PST
Fetch.ai Challenge Talk
Room 1
11:00 PST
Fetch.ai Challenge
Room 1
13:00 PST
Fetch.ai Challenge
Room 2